

AQA AS CHEMISTRY

REDOX

(a)	iron	is extracted from iron(III) oxide using carbon at a high temperature.	
	(i)	State the type of reaction that iron(III) oxide undergoes in this extraction.	
			(1)
	(ii)	Write a half-equation for the reaction of the iron(III) ions in this extraction.	
			(1)
(b)	At a	high temperature, carbon undergoes combustion when it reacts with oxygen.	
	(i)	Suggest why it is not possible to measure the enthalpy change directly for the following combustion reaction.	
		C(s,graphite) + $\frac{1}{2}$ O ₂ (g) \longrightarrow CO(g)	
			(1)
	(ii)	State Hess's Law.	()
			(1)
	(iii)	State the meaning of the term standard enthalpy of combustion.	
		(Extra space)	
			(3)

			Fe ₂ O ₃ (s)	CO(g)	Fe(I)	CO ₂ (g)
		$\Delta H_{ m f}^{\Theta}$ / kJ mol ⁻¹	- 822	- 111	+14	- 394
_		Fe ₂ O ₃ (s)	+ 3CO	(g)>	2Fe(I)	+ 3CO ₂ (g)
	(Ext	ra space)				
	(i)	Write an equation fo of carbon dioxide.	r the reaction tha	it represents the s		 Ilpy of formation
	(i)	-	r the reaction tha	it represents the s		
	(i) (ii)	of carbon dioxide. State why the value is the same as the value.	quoted in part (c)) for the standard dard enthalpy of c	enthalpy of for	mation of $CO_2(g)$ carbon.
		of carbon dioxide. State why the value is the same as the value.	quoted in part (c)) for the standard dard enthalpy of c	enthalpy of for	mation of $CO_2(g)$ carbon.
		of carbon dioxide. State why the value is the same as the value.	quoted in part (c)) for the standard dard enthalpy of c	enthalpy of for	mation of $CO_2(g)$ carbon.
	(ii)	of carbon dioxide. State why the value is the same as the value.	quoted in part (c)) for the standard dard enthalpy of c	enthalpy of for	 rmation of CO₂(g) carbon.

(2)

		l_2	+	10HNO ₃	\longrightarrow	HIC) ₃ +	NC	O_2 -	٠	H ₂ O
											(1)
(b)	crys The	tallised fr	om the je invol	mineral Ch	nile saltpe ction betv	tre. veen NalO	₃ and Nal i	er sodium r n acidic sol		as been	
		IO ₃ -	+	5e ⁻	+	6H ⁺	\longrightarrow	3H ₂ O	+	$\frac{1}{2}$ l ₂	
						1-	\longrightarrow	$\frac{1}{2}$ l ₂	+	e ⁻	
			-	tions to dec			equation	for the prod	uction (of iodine b	ру
	Ove	rall ionic	equatio	n							
	The	oxidising	agent								(2)
(c)		en concer formed.	ntrated	sulfuric acid	d is added	d to potass	ium iodide	, solid sulfu	r and a	black soli	
	(i)	Identify	the bla	ck solid.							
											(1)
	(ii)	Deduce	the ha	lf-equation	for the fo	rmation of	sulfur from	oncentrat	ted sulf	uric acid.	, ,
											(1)

(ii)

Complete the balancing of the following equation.

(d)	When iodide ions react with concentrated sulfuric acid in a different redox reaction, the oxidation state of sulfur changes from +6 to -2. The reduction product of this reaction is a poisonous gas that has an unpleasant smell. Identify this gas.				
			(1)		
(e)	•	ellow precipitate is formed when silver nitrate solution, acidified with dilute nitric acid, is ed to an aqueous solution containing iodide ions.			
	(ii)	Write the simplest ionic equation for the formation of the yellow precipitate.			
			(1)		
	(ii)	State what is observed when concentrated ammonia solution is added to this precipitate.			
			(1)		
	(iii)	State why the silver nitrate is acidified when testing for iodide ions.	()		
			(1)		
(f)	Cons	sider the following reaction in which iodide ions behave as reducing agents.			
	(i)	$Cl_2(aq)$ + $2l^-(aq)$ \longrightarrow $l_2(aq)$ + $2Cl^-(aq)$ In terms of electrons, state the meaning of the term <i>reducing agent</i> .			
	(ii)	Write a half-equation for the conversion of chlorine into chloride ions.	(1)		
			(1)		

		(iii)	Suggest why iodide ions are stronger reducing agents than chloride ions.	
			(Extra space)	
			(Total 15	(2) marks)
3	Met	als are	e usually extracted from oxides.	
			nese oxides occur naturally. Other oxides are made by roasting sulfide ores in air, sulfur dioxide as a by-product.	
	For t	he ext	raction of some metals, the oxide needs to be converted into a chloride.	
	(a)	The	ore molybdenite contains molybdenum disulfide (MoS_2). first stage in the extraction of molybdenum is to roast the ore in air to form bdenum oxide (MoO_3) and sulfur dioxide.	
		(i)	Write an equation for the first stage in this extraction.	
				(1)
		(ii)	The release of sulfur dioxide into the atmosphere causes environmental problems and wastes a valuable resource. Identify one environmental problem and identify on use for the sulfur dioxide.	ie
			Environmental problem	
			Use for sulfur dioxide	
				(2)

	(111)	hydrogen.	
		Write an equation for this reaction.	
			(1)
	(iv)	State one risk in using hydrogen gas in metal extractions.	
(h) Ca	licium is an expensive metal. It is extracted by the electrolysis of molton calcium chloride	(1)
(b	(i)	lcium is an expensive metal. It is extracted by the electrolysis of molten calcium chloride. State why calcium chloride must be molten for electrolysis to occur.	
			(1)
	(ii)	Write an equation for the reaction that takes place at the negative electrode during this electrolysis.	
			(1)
	(iii)	Identify the major cost in this extraction of calcium.	
		(Total 8 ma	(1) arks)
	-	e of nitrogen dioxide gas (NO_2) was prepared by the reaction of copper with ated nitric acid.	
(a	i) (i)	Balance the equation for the reaction of copper with concentrated nitric acid.	
		Cu + $HNO_3 \rightarrow Cu(NO_3)_2 + NO_2 + H_2O$	(1)
	(ii)	Give the oxidation state of nitrogen in each of the following compounds.	
		HNO ₃	
		NO ₂	(2)

	(iii)	Deduce the half-equation for the conversion of HNO ₃ into NO ₂ in this reaction.	
			(1)
(b)		following equilibrium is established between colourless dinitrogen tetraoxide gas D_4) and dark brown nitrogen dioxide gas.	
		$N_2O_4(g) \rightleftharpoons 2NO_2(g)$ $\Delta H = 58 \text{ kJ mol}^{-1}$	
	(i)	Give two features of a reaction at equilibrium.	
		Feature 1	
		Feature 2	
			(2)
	(ii)	Use Le Chatelier's principle to explain why the mixture of gases becomes darker in colour when the mixture is heated at constant pressure.	, ,
			(2)

(iii)	Use Le Chatelier's principle to explain why the amount of NO $_{\rm 2}$ decreases when the pressure is increased at constant temperature.	
	(2)	
	(Total 10 marks))

5

The method of extraction of zinc has changed as different ores containing the element have been discovered and as technology has improved.

Extraction process 1

In the earliest process, calamine (impure zinc carbonate) was heated with charcoal in earthenware pots. This two-stage process gave a low yield of zinc.

$$ZnCO_3(s) \rightarrow ZnO(s) + CO_2(g)$$

$$ZnO(s) + C(s) \rightarrow Zn(s) + CO(g)$$

Extraction process 2

Deposits of calamine were being used up and a new two-stage process was developed using zinc sulfide ores. All of the waste gases from this process were released into the atmosphere.

$$2\mathsf{ZnS}(s) + 3\mathsf{O}_2(g) \rightarrow 2\mathsf{ZnO}(s) + 2\mathsf{SO}_2(g)$$

$$ZnO(s) + C(s) \rightarrow Zn(s) + CO(g)$$

Extraction process 3

The modern process uses the electrolysis of aqueous solutions of very pure zinc sulfate. The first step in this process is the same as the first step in Extraction process $\mathbf{2}$. The second step uses sulfuric acid made from the SO_2 collected in the first step. The third step involves the electrolysis of zinc sulfate solution to form pure zinc.

$$2ZnS(s) + 3O_2(g) \rightarrow 2ZnO(s) + 2SO_2(g)$$
 $ZnO(s) + H_2SO_4(aq) \rightarrow ZnSO_4(aq) + H_2O(l)$
 $ZnSO_4(aq) \xrightarrow{\text{electrolysis}} Zn(s)$

(a) In the first stage of Extraction process **1** the following equilibrium is established when zinc carbonate is heated in a closed container.

$$ZnCO_3(s) \rightleftharpoons ZnO(s) + CO_2(g)$$

allowing the c	arbon dioxide to	o escape from	i the containe	r.		
State and exp	olain one enviro	nmental reaso	on why Extrac	tion process	3 is an impro	vement
		nmental reaso	on why Extrac	tion process	3 is an impro	vement
		nmental reas	on why Extrac	tion process	3 is an impro	vement
		nmental reas	on why Extrac	etion process	3 is an impro	vement
		nmental reas	on why Extrac	etion process	3 is an impro	vement
		nmental reas	on why Extrac	tion process	3 is an impro	vement
State and expover Extraction		nmental reas	on why Extrac	etion process	3 is an impro	vement

(6)	which is justified in terms of the product formed.	
		(2)
(d)	Deduce the half-equation for the formation of zinc from zinc ions during the electrolysis of zinc sulfate solution and identify the electrode at which this reaction occurs.	
		(2)
(e)	Identify one reaction from the three extraction processes that is not a redox reaction and state the type of reaction that it is. In terms of redox, state what happens to the carbon in Extraction process 2 .	
		(3)

	(f)		and magnesium both react with steam in a similar way. Write an equation for the tion of zinc with steam and name the products of this reaction.	
			(Total 15 ma	(2) arks)
6	-		gas is used in the chemical industry.	
	(a)		gsten is extracted by passing hydrogen over heated tungsten oxide (WO ₃).	
		(i)	State the role of the hydrogen in this reaction.	
		(ii)	Write an equation for this reaction.	(1)
		(iii)	State one risk of using hydrogen gas in metal extractions.	(1)
				(1)
	(b)	Hyd	rogen is used to convert oleic acid into stearic acid as shown by the following equation. H	
		CH ₂	$C = C$ $CH_2(CH_2)_6COOH$ $CH_2(CH_2)_6COOH$ $CH_2(CH_2)_6COOH$ $CH_2(CH_2)_6COOH$ $CH_2(CH_2)_6COOH$ $CH_2(CH_2)_6COOH$ $CH_2(CH_2)_6COOH$ $CH_2(CH_2)_6COOH$	
		(i)	Use your knowledge of the chemistry of alkenes to deduce the type of reaction that has occurred in this conversion.	
				(1)

	(11)	State the type of stereoisomensm		aciu.		
(c)	-	rogen reacts with nitrogen in the Ha ablished is shown below.	aber Process. Th	ne equation for	the equilibrium that is	(1)
		$N_2(g) + 3H_2(g)$	≥ 2NH ₃ (g)			
	(i)	State Le Chatelier's principle.				
	(ii)	Use Le Chatelier's principle to exp	•		-	(1)
		equilibrium results in an increase	in the equilibriur	n yieid of amm	onia. 	
(d)	Hyd	rogen reacts with oxygen in an exo	thermic reaction	as shown by th	ne following equation.	(2)
		$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(g)$	Δ <i>H</i> = –242 kJ	mol ⁻¹		
		the information in the equation and he bond enthalpy of the H-H bond.		following table	to calculate a value	
			О–Н	O=O		
		Mean bond enthalpy / kJ mol ⁻¹	+ 463	+ 496		
	•••••				 (Total 11 ma	(3) arks)

7
•

(b)

Nitric acid is manufactured from ammonia in a process that involves several stages.

(a)	In the first stage, ammonia is converted into nitrogen monoxide and the following
	equilibrium is established.

$$4NH_3(g) + 5O_2(g) \rightleftharpoons 4NO(g) + 6H_2O(g)$$
 $\Delta H = -905 \text{ kJ mol}^{-1}$

The catalyst for this equilibrium reaction is a platinum–rhodium alloy in the form of a gauze. This catalyst gauze is heated initially but then remains hot during the reaction.

(i)	In terms of redox, state what happens to the ammonia in the forward reaction.	
		(1)
(ii)	Suggest a reason why the catalyst must be hot.	
		(1)
(iii)	Suggest a reason why the catalyst remains hot during the reaction.	
		(1)
(iv)	State how a catalyst increases the rate of a reaction.	
		(2)
	e second stage, nitrogen monoxide is converted into nitrogen dioxide. The equation for quilibrium that is established is shown below.	
	$2NO(g) + O_2(g) = 2NO_2(g)$ $\Delta H = -113 \text{ kJ mol}^{-1}$	
Expla	ain why the equilibrium mixture is cooled during this stage of the process.	

(2)

(c)	In the	e final stage, nitrogen dioxide reacts with water as shown by the following equation	n.
		$2NO_2(g) + H_2O(I) \rightarrow H^+(aq) + NO_3^-(aq) + HNO_2(aq)$	
	Give	e the oxidation state of nitrogen in each of the following.	
	NO ₂		
	NO ₃		
	HNC) ₂	
		(Tot	(3) al 10 marks)
Cop	per is	extracted from the ore chalcopyrite (CuFeS ₂) in a three-stage process.	
(a)	In the	e first stage of this extraction, the chalcopyrite is heated with silicon dioxide and gen.	
	(i)	Balance the following equation for this first stage in which copper(I) sulfide is for	med.
		CuFeS ₂ +SiO ₂ +O ₂ \rightarrow Cu ₂ S +FeSiO ₃ +SO ₂	(1)
	(ii)	Give one environmental reason why the SO_2 gas formed in this reaction is not allowed to escape into the atmosphere.	(1)
			(1)
	(iii)	State one use for the sulfur dioxide formed in this reaction.	
			(1)
(b)	oxide	ne second stage of this extraction, the copper(I) sulfide is converted into copper(II) e. This occurs by roasting the sulfide with oxygen at high temperature. e an equation for this reaction.	
			(1)

8

(c)		the third stage of this extraction, copper(II) oxide is reduced to copper by its reaction with son. Write an equation for this reaction.	
			(1)
(d)		ap iron can be used to extract copper from dilute aqueous solutions containing per(II) ions.	(-,
	(i)	Explain why this is a low-cost method of extracting copper.	
			(1)
	(ii)	Write the simplest ionic equation for the reaction of iron with copper(II) ions in aqueous solution.	
			(1)
		(Total 7 ma	(1) arks)